XCI.-Studies of Dynamic Isomerism. Part XXVI. Consecutive Changes in the Mutarotation of Galactose.

By Gilbert Freeman Smith and Thomas Martin Lowry.

In a paper on the " Dynamic Isomerism of the Reducing Sugars," recently contributed by one of us (Z. physikal. Chem., Cohen Festband, p. 125), a detailed examination was made of the evidence for the unimolecular character of the mutarotation curves for glucose. The conclusion was reached that, even under the most diverse conditions of catalysis, the mutarotation of glucose and of tetramethyl glucose conforms strictly to the unimolecular law, within the limits of experimental error,* although transient perturbations

* Inflected curves have been observed, however, on two occasions when mutarotation was initiated by the addition of a drop of dilute acid or alkali to a solution of tetra-acetyl glucose in dry ethyl acetate.
during the initial stages of the action are not excluded by the experimental data there cited. The unimolecular character of the curves can, however, be reconciled with the existence of an indefinitely large proportion of an intermediate μ form of the sugar, provided that the velocity coefficients and optical rotations of the three forms are distributed symmetrically, since under these conditions the first stage of the transformation proceeds according to the unimolecular law, whilst the second stage (which would give rise to an inflected curve) is not accompanied by any marked change of rotatory power. The real existence of this hypothetical second stage was established by comparing the rate of change of rotatory power with the rate of increase of solubility of glucose in aqueous alcohol, since this comparison showed that the chemical changes last about twice as long as the mutarotation, and therefore continue for a period of several hours after the changes of rotatory power are complete.

In the analogous case of galactose it has been generally (but erroneously) assumed that the mutarotation also proceeds according to a unimolecular law. Evidence of the existence of consecutive chemical changes was found, however, by Riiber and his colleagues (Ber., 1926, 59, 2266; compare Ber., 1922, 55, 3136, 3142) in the fact that the dissolution of the α-sugar in water at 20° gives rise to an expansion during the first 15 minutes, followed by a contraction, which only becomes logarithmic after 50 minutes have elapsed. In the same way they found that the initial stages of mutarotation are accompanied by an absorption of heat, which lasts for about 13 minutes at 0°, whereas the later stages are accompanied by a liberation of heat. The mutarotation of α-galactose is therefore associated with two consecutive changes of structure, which give rise to energy changes and volume changes of opposite sign, as we should expect them to be if the intermediate μ-compound is related in a symmetrical manner to the stereoisomeric α - and β-sugars. No analogous indications of the complexity of the process were obtained, however, from their observations of mutarotation, which appeared to be accurately unimolecular.

Anomalies in the Mutarotation of α-Galactose.-The present paper originated in an attempt to establish a standard value for the velocity coefficient of galactose, as had already been done in the case of glucose (J., 1927, 1736), as a preliminary to the determination of a catalytic catenary for the sugar. We found, however, that our mutarotation curves made no approach to the unimolecular law, since the velocity coefficient fell progressively from $k_{e}=$ about 0.025 at 7 minutes to a limiting value of about 0.019 . A survey of the literature confirmed the view that the mutarotation of galactose is not a simple unimolecular change. Thus, two of Urech's early experiments (Ber., 1885, 18, 3047) gave velocity
coefficients ranging irregularly from 0.0092 to 0.0153 and from 0.0071 to 0.0122 , but the third showed a progressive decrease from 0.0132 to 0.0048 in the course of 11 hours at 14°. Since this decrease was attributed to a secondary transformation of the sugar (similar to that which results from the action of alkalis; compare Lobry de Bruyn, Rec. trav. chim., 1895, 14, 201), Urech's observations were cited by Riiber and Minsaas, together with the more exact investigation of Osaka (Z. physikal. Chem., 1900, 35, 668), as evidence that the mutarotation of galactose " proceeds according to the simple logarithmic equation of a reaction of the first order." Osaka's conclusion, " that the course of the alterations of rotatory power of the sugars, on which observations have been made, can be expressed by the velocity-formula for a reaction of the first order," appears to have been justified for most of the eight sugars for which data had been given by Tollens and his colleagues (Annalen, 1890, 257, 164; 1892, 271, 60); but an inspection of the tables shows that his velocity coefficient for galactose decreased progressively from 0.0120 to 0.0088 at $c=10.20$ and from 0.0131 to 0.0076 at $c=11.08$; his average value was therefore derived from numbers which show a systematic variation of from 50 to 80% from the limiting value. In the same way, we found that the average value, $k=0.00479$ (logarithms to base 10), given by Mackenzie and Ghosh (Proc. Roy. Soc. Edin., 1914, 35, 22) for the velocity coefficient of a 2.175% solution of galactose at $12 \cdot 5^{\circ}$, was based on data which showed a progressive decrease from $k=0.0080$ at 8 minutes to $k=0.0036$ at 166-323 minutes. The data of Riiber and Minsaas, on the other hand, gave steady values for the velocity coefficient of α-galactose; but, since their first value was based on readings taken 20 and 30 minutes after dissolution, it is not surprising that they should have overlooked an anomaly which is really conspicuous only during the first 10 minutes.

Although the earlier data thus confirmed unanimously the large deviations from the unimolecular formula which we had observed in the mutarotation of α-galactose, we took the precaution of repeating the observations with specially purified samples of the sugar, which was recrystallised for this purpose from acetic acid and from alcohol according to a method for which we are indebted to Professor Haworth; similar results were also obtained when the polarimeter tube was kept at $0 \cdot 2^{\circ}$. Finally, since the velocity coefficients covered just the same range of values at concentrations of $2 \frac{1}{2}, 5,10$, and 15 g . of galactose in 100 c.c. of solution, it was clear that the action could not be multimolecular; we therefore concluded that the mutarotation was probably of a type which could be expressed by means of an equation involving two or more consecutive unimolecular changes.

Anomalies in the Mutarotation of β-Galactose.-Although Riiber and Minsaas recorded a steady value for the velocity coefficient of β-galactose from 10-20 minutes and onwards, Hudson and Yanovsky (J. Amer. Chem. Soc., 1917,39, 1022) had already observed the anomaly of a minimum rotation in a solution of α - and β-galactose in water, which had been diluted with alcohol to a concentration of 60%. We therefore made a fresh study of the mutarotation of β-galactose in order to see whether the anomaly which we had observed in α-galactose could be detected when mutarotation took place in the reverse direction. Our first sample, prepared by the method of Hudson and Yanovsky, gave $[\alpha]_{5461}=66^{\circ}$, whilst the second and third samples both gave $[\alpha]_{5461}=63 \cdot 5^{\circ}$, no further reduction of rotatory power being produced when the second sample was washed four times more with 80% alcohol. A rough estimate of the rotatory dispersion of galactose showed that Hudson's value for the β-sugar $[\alpha]_{\mathrm{D}}=52^{\circ}$ would correspond with a specific rotation $[\alpha]_{5461}=$ about 61°. This rotation is 2° less than our minimum, but, if deduced by extrapolation to zero time, would be appreciably too low, in view of the slowness with which mutarotation takes place during the first few minutes. We therefore think it probable that our sample was substantially pure, and suggest that an initial rotation $[\alpha]_{5461}=63.5^{\circ}$ may be accepted as a provisional standard. This rotatory power remained constant, within the limits of experimental error, during a period of about 4 minutes; the rotation then increased rapidly, giving rise to an inflected mutarotation curve, with a maximum slope at about 10 minutes. The velocity coefficient, on the other hand, increased progressively from zero to a limiting value which was identical with that finally reached by the α-sugar.
Analysis of the Mutarotation Curves.-The view that " the interconversion of α - and β-glucose depends on the splitting of the oxide ring " and that " the aldehydic form of the sugar or its hydrate . . . is a necessary intermediate product in the conversion of α - into β glucose or vice versa" (J., 1904, 85, 1565) implies that the mutarotation of the α - or β-form of a reducing sugar depends on two consecutive unimolecular changes, as set out in the scheme

Equations for an action of this type were therefore worked out at the request of one of us by Mr. H. Klugh in 1903, and a more complete analysis, in collaboration with Mr. W. T. John, was published in 1910 (J., 97, 2634); but the only inflected mutarotation curves that have been studied hitherto (Lowry and Glover, J., 1913, 103,
913) were too complex to be expressed by the preceding scheme; the data now recorded therefore provide the first opportunity that has arisen of completing this mathematical analysis.

Before giving an account of this investigation, however, we wish to make it clear that we are more concerned to demonstrate the process by which the analysis has been carried out than to attach a precise physico-chemical meaning to the results to which it leads, since these can only be regarded as valid when the fundamental assumptions on which the formulæ depend have been verified. In particular, the values deduced for the equilibrium concentration, y_{∞}, and the rotatory power, μ, of the intermediate sugar, depend on the hypothesis that only three sugars are concerned in the final equilibrium, viz., the α - and β-sugars (6 -ring oxides) and the intermediate (open-chain) μ-sugar, whereas we should prefer to postulate also the presence of a pair of γ-sugars (or 5 -ring oxides), making 5 sugars in all. Whilst, therefore, our data can be represented completely by the empirical equations for 3 isomerides, we do not regard this as a proof that only three sugars are present in the final equilibrium, since we should then be obliged to admit the unimolecular form of the mutarotation curves of α - and β-glucose as evidence that only two isomerides are formed in an aqueous solution of glucose. Again, since a mathematical analysis is only practicable when the γ-sugars are ignored, we have not thought it necessary to discuss the limits of error of our empirical equations, and have therefore solved them as if the arbitrary constants which they contain were mathematically exact.

Empirical Equations for the Mutarotation Curves.

(a) Numerical Data.-The following data were available for the analysis of the mutarotation curves for aqueous solutions of α - and β-galactose at 20°.

Table I.

Mutarotation of α - and β-Galactose at 20°.

1. a-Galactose : first sample, recrystallised from $80 \% \mathrm{EtOH}$.

(a)		(4 dm .)	69		${ }_{\infty}$
(b)	5\%	(2 dm.$)$	$\theta_{0}=16.55$		
(c)	10\%	(2 dm .)	$\theta_{0}=31.03$	$\theta_{\infty}=17 \cdot 20$	${ }_{\infty}$
(d)	10\%	(2 dm .)	$\theta_{0}=33.09$	$18 \cdot 15$	-
(e)		(2 dm .)	$\theta_{0}=45.42$		
	15\%	(2 dm .)	$\theta_{0}=48.88$		${ }^{\circ}$

2. a-Galactose : (a) second sample, recrystallised twice from $80 \% \mathrm{EtOH}$.
(b) third sample, recrystallised from acetic acid.
(c) fourth sample, recrystallised from acetic acid and 80% EtOH.
(a) 10% (2 dm.) $\theta_{0}=33.63 \quad \theta_{\infty}=18.80 \quad k_{\infty}=0.0188$
(b) $10 \%\left(2 \mathrm{dm}\right.$.) $\theta_{0}=34.50 \theta_{\infty}^{\infty}=18.81 k_{\infty}^{\infty}=0.0189$
(c) $10 \%\left(2 \mathrm{dm}\right.$.) $\theta_{0}=34.71 \theta_{\infty}^{\infty}=18.91 k_{\infty}^{\infty}=0.0185$
3. β-Galactose: (a) precipitated by alcohol twice, and washed by 80% EtOH once.
(b) precipitated by alcohol twice, and washed by 80% EtOH twice.
(c) precipitated by alcohol twice, and washed by 80% EtOH six times.

(a) $5 \%(2 \mathrm{dm})$.	$\theta_{0}=6.38 \quad \theta_{\infty}=9.28 \quad k_{\infty}=0.0191$
(b) 5%	$(2 \mathrm{dm})$.
$\theta_{0}=6.35 \quad \theta_{\infty}=9.34$	$k_{\infty}=0.0183$
(c) 7.7%	$(2 \mathrm{dm}$.)
$\theta_{0}=9.17 \theta_{\infty}=14.57$	$k_{\infty}=0.0192$

In this table θ_{0} is deduced by extrapolating the rotation of the solution to zero time, and θ_{∞} by direct observation of the final rotatory power, whilst k_{∞} is the velocity coefficient calculated from the later part of the mutarotation.
(b) Preliminary Survey.-Before making use of the general equations of Lowry and John it is desirable to make a preliminary enquiry as to the cause of the deviations from the unimolecular equations, which are found to satisfy, at least approximately, the data for glucose, but not for galactose.
(i) Two consecutive reversible unimolecular actions can give rise to unimolecular mutarotation curves only when $k_{1}=k_{3}, k_{2}=k_{4}$, and $\alpha+\beta=2 \mu$. Under these conditions, the general equations of Lowry and John reduce to the very simple form :

$$
\begin{aligned}
& \theta_{a}=\frac{1}{2}(\alpha-\beta) e^{-k_{1} t}+\frac{1}{2}(\alpha+\beta) \\
& \theta_{\beta}=-\frac{1}{2}(\alpha-\beta) e^{-k_{1} t}+\frac{1}{2}(\alpha+\beta)
\end{aligned}
$$

The mutarotation then takes the form of a unimolecular change with velocity coefficient k_{1}, and covering a range of rotations from α or β to a final value $\frac{1}{2}(\alpha+\beta)$. Since k_{2} does not enter into these equations at all, this statement is true for all concentrations of the intermediate sugar, which gives no indication whatever of its presence, in spite of the fact that it forms $100 k_{1} /\left(k_{1}+k_{2}\right) \%$ of the final equilibrium mixture, where this ratio may have any value from 0 to 100%.
(ii) If the rotatory power of the intermediate sugar is not the mean of the rotations of the α - and β-forms (although $k_{1}=k_{3}$ and $k_{2}=k_{4}$, as before), the equations become

$$
\begin{array}{r}
\theta_{a}=\frac{\alpha-\beta}{2} e^{-k_{1} t}+\left\{\frac{\alpha+\beta}{2}-\mu\right\} \frac{k_{1}}{k_{1}+2 k_{2}} e^{-\left(k_{1}+2 k_{2}\right) t}+ \\
\frac{1}{k_{1}+2 k_{2}}\left\{(\alpha+\beta) k_{2}+\mu k_{1}\right\} \\
\theta_{\beta}=-\frac{\alpha-\beta}{2} e^{-k_{1} t}+\left\{\frac{\alpha+\beta}{2}-\mu\right\} \frac{k_{1}}{k_{1}+2 k_{2}} e^{-\left(k_{1}+2 k_{2}\right) t}+ \\
\frac{1}{k_{1}+2 k_{2}}\left\{(\alpha+\beta) k_{2}+\mu k_{1}\right\}
\end{array}
$$

The second exponential term (which vanishes only when $\alpha+\beta=2 \mu$) now persists; but since the coefficients of the two exponentials are the same in both equations, although different in sign, these two terms can be eliminated, one at a time, by adding or subtracting the two equations, thus:
since

$$
\begin{gathered}
\theta_{a}-\theta_{\beta}=(\alpha-\beta) e^{-k_{1} t} \\
\theta_{a}+\theta_{\beta}-2 \theta_{\infty}=(\alpha+\beta-2 \mu) \frac{k_{1}}{k_{1}+2 k_{2}} e^{-\left(k_{1}+2 k_{2}\right) t} \\
\theta_{\infty}=\left[(\alpha+\beta) k_{2}+\mu k_{1}\right] /\left(k_{1}+2 k_{2}\right) .
\end{gathered}
$$

If, therefore, the anomalous behaviour of galactose (as contrasted with glucose) were due exclusively to a deviation of the rotatory power of the intermediate sugar from the mean value for the α - and β-sugars, we could deduce a unimolecular coefficient for the difference of the rotatory powers of the α - and β-sugars, and so determine k_{1}, and then deduce a second unimolecular coefficient for the average of the rotatory powers, and so calculate the value of k_{2} from the exponent ($k_{1}+2 k_{2}$). In this way we could obtain a complete solution of the problem, without making use of the general equations at all, and this simple test should obviously be applied in every case before the more complex procedure described below is adopted.

Table II.
 Mutarotation of α - and β-Galactose.

When this test is applied to α - and β-galactose, as in Table II, it can be seen at once that, whilst the differences conform very nearly to the unimolecular law, the averages exhibit obvious systematic deviations, which are, however, also present in a less conspicuous form in the curve of differences. Whilst, therefore, the anomalous behaviour of galactose may be attributed in the first instance to the
fact that the rotatory power of the intermediate sugar approximates to that of the β-sugar, instead of to the average of the α - and β-sugars, it is clear that the velocity coefficients are also unsymmetrical, but to an extent which can only be disclosed by a complete mathematical analysis, since the small deviations recorded in Table II give no indication of the actual magnitude of this anomaly.
(c) General Equations.-Since none of the simplifying assumptions is possible in the case of galactose, it is necessary to fall back on the general equations for two consecutive unimolecular reactions. The empirical equations for the mutarotation of the α - and β-sugars then have the general form

$$
\theta_{a}=A_{1} e^{-m_{1} t}+B_{1} e^{-m_{2} t}+C ; \theta_{\beta}=A_{2} e^{-m_{1} t}+B_{2} e^{-m_{2} t}+C .
$$

The number of exponential terms in these equations is equal to the number of consecutive changes which the sugars undergo; the identity of the exponents, and of the final constant C, expresses the fact that the sugars are undergoing the same series of changes (although in opposite directions) and give rise to the same final equilibrium mixture. It will be seen that these two equations, like the scheme on p. 669, include 7 arbitrary constants; if, therefore, equations of this type can be deduced for the mutarotation curves of the α - and β-sugars, it is theoretically possible to calculate from them the 7 fundamental constants of the original system, viz., the four velocity coefficients $k_{1}, k_{2}, k_{3}, k_{4}$, and the rotatory powers α, μ, β, of the three sugars.
(d) Initial Rotatory Power of α - and β-Galactose.-The initial rotations of the α - and β-sugars are difficult to fix, since they depend, not only on the purity and dryness of the sugar, but on its homogeneity, i.e., on the percentage of the α - and β-sugars which it contains; and even when the homogeneity of the material has been established, the initial rotations can only be deduced by extrapolation to a " zero-time," which is not very well defined, since there is always a little uncertainty as to the moment at which on the average the sugar entered into solution. We have therefore selected for α-galactose the value $[\alpha]_{5461}=172 \cdot 5^{\circ}$, and for β-galactose the value $[\alpha]_{5461}=63 \cdot 5^{\circ}$, as representing most closely the rotatory power of the sugars used in our experiments (compare Expts. $2 b$ and $3 b$ in Table I), although a slightly higher value for the initial and final rotations of α-galactose was given in Expt. 2c, where the concentration of the solution was perhaps a little greater. Since, however, the data for calculation were based on values for a 10% solution of the α-sugar in a 2 dm . tube or for a 5% solution of the β-sugar in a 4 dm . tube, the rotations in the empirical equation are one-fifth of the specific rotations. The initial rotations of the α -
and β-sugars, which do not enter directly into the equations, therefore lead to the relations
$\alpha=A_{1}+B_{1}+C=34.5^{\circ}$ or $A_{1}+B_{1}=15.7^{\circ}\left(\right.$ since $C=18.8^{\circ}$, see below);
$\beta=A_{2}+B_{2}+C=12 \cdot 7^{\circ}$ or $A_{2}+B_{2}=-6.1^{\circ}$.
(e) Rotatory Power of the Equilibrium Mixture.-The final specific rotations of the 12 solutions set out in Table I are as follows:

$$
\begin{aligned}
& \text { 1. }[\alpha]_{5461}=91^{\circ}, 89^{\circ}, 86^{\circ}, 91^{\circ}, 83^{\circ}, 91^{\circ} . \\
& \text { 2. }[\alpha]_{5461}=94^{\circ}, 94^{\circ}, 95^{\circ} \\
& \text { 3. } \left.[\alpha]_{5461}=93^{\circ}, 93^{\circ}, 95^{\circ}\right\} \text { Mean } 94^{\circ} .
\end{aligned}
$$

The first six values are irregular and low, perhaps on account of the presence of a variable proportion of alcohol in the first sample of the recrystallised sugar; but three further samples of α-galactose, and three samples of β-galactose give a uniform value $[\alpha]_{5461}=94^{\circ}$. The constant term in the two equations, which represents the final rotation of the solutions, has therefore the value $C=18.8^{\circ}$.
(f) Final Velocity Coefficients of α - and β-Galactose.-Apart from the initial and final rotations, the easiest quantity to determine in these equations is the limiting value of the unimolecular velocity coefficient. Trustworthy values are obtained by ignoring the first half of the mutarotation of the α-sugar (where the coefficients are abnormally high), and the first third of the mutarotation of the β-sugar (where they are abnormally low), and treating the observations as if they had been begun 30 or 40 minutes after making up the solution (see col. 6 in Tables VI and VII). Since, as is shown below, the influence of the second term dies out after about $\frac{1}{2}$ hour, this is a logical method for determining the value of the smaller exponent. It will also be recalled that Riiber and Minsaas obtained a constant unimolecular velocity coefficient (and therefore failed to discover the anomalous character of the mutarotation curves) as a result of adopting a similar procedure. In the present instance, the limiting value of the velocity coefficient, as deduced from the 12 experiments set out in Table I, is $m_{1}=0.0188$, and this value can be inserted immediately in the equations as the exponent of the first term. When the true initial rotation of the α-sugar was used in calculating the unimolecular velocity coefficients, however, a slightly higher (but less trustworthy) limiting value was found, namely $k=0.0192$ (see col. 5 in Tables VI and VII), which agrees exactly with the mean of six values deduced from a study of three different properties of the two sugars by Riiber and Minsaas, viz.,

	k.	k_{8}.
Mutarotation of α-galactose	0.00834	0.0190
, , β - ,	0.00837	0.0193
Volume changes of α-galactose	0.00836	0.0192
	0.00845	0.0195
Refractivity of α-galactose	0.00822	0.0189
, β -	0.00843	0.0194 0.0192

(g) Initial Velocity Coefficient of β-Galactose.-Since the rotatory power of β-galactose remains constant for about 4 minutes, $d \theta / d t=0$, when $t=0$; and since at this stage the only transformation is from the β-sugar to the intermediate (aldehydic) form, it follows that the rotatory power of these two sugars must be nearly the same, so that $\beta=\mu$ (approximately). This condition is, however, not sufficiently well-defined to be utilised in order to fix at once the value of the unknown rotatory power, μ, of the intermediate sugar (which is one of the objects of this research) and can only be used as evidence of the approximate equality of the rotatory power of the two sugars.
(h) Initial Velocity Coefficient of α-Galactose.-Although the initial stage of the mutarotation is obviously unimolecular rather than multimolecular, the velocity coefficients calculated by the ordinary method change so rapidly that it is not practicable to deduce a trustworthy initial value by extrapolating to zero time. Such a value can, however, be obtained by calculating from the rotations themselves an intermediate "end-point," to which the first stage of the mutarotation would lead if the second stage could be suspended. For this purpose we have used a formula given by Smith (Phil. Mag., 1926, 1, 496), viz.,

$$
\alpha_{\infty}=\alpha_{1}-\left(\alpha_{1}-\alpha_{2}\right)^{2} /\left(2 \alpha_{2}-\alpha_{1}-\alpha_{3}\right),
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are readings at equal increments of time, and α_{∞} is the hypothetical end-point.

Four successive groups of three rotations at intervals of 2 minutes, read from a curve on which the readings for the first 10 minutes of Expt. $1 d$ had been plotted, were found by this method to give

$$
\alpha_{\infty}=22 \cdot 5,28 \cdot 0,26 \cdot 7,25 \cdot 4 ; \text { mean } 25 \cdot 6^{\circ} .[\alpha]_{5461}=132 \cdot 5^{\circ} . *
$$

A more accurate series of 5 sets of 3 readings, covering a total period of 7 minutes only, in Expt. $2 b$ gave

$$
\alpha_{\infty}=28 \cdot 1,27 \cdot 6,26 \cdot 9,26 \cdot 3,24 \cdot 5 ; \text { mean } 26 \cdot 7^{\circ} . \quad[\alpha]_{5461}=133 \cdot 5^{\circ} .
$$

A third series of 4 sets of three readings (Expt. 2c), covering a period of $7 \frac{1}{2}$ minutes, gave

$$
\alpha_{\infty}=26 \cdot 9,26 \cdot 4,27 \cdot 8,27 \cdot 9 ; \text { mean } 27 \cdot 25 . \quad[\alpha]_{5461}=136 \cdot 2^{\circ} .
$$

[^0]The last two series give a very uniform value for the end-point, $\alpha_{\infty}=27^{\circ}$, from which we can deduce that the specific rotatory power of the solution on completion of the first stage of the transformation would be $[\alpha]_{5461}=135^{\circ}$, as contrasted with the final equilibrium value $[\alpha]_{5461}=94^{\circ}$ at the end of the second stage.

This rotatory power is of the same order of magnitude as that assigned by Riiber and Minsaas to the intermediate sugar, viz., $[\alpha]_{\mathrm{D}}=135^{\circ}$, whence $[\alpha]_{5461}=$ about 153°; but it cannot be interpreted in this way, since, as we have seen, the intermediate form has nearly the same rotatory power as the β-sugar, whereas this is nearly equal to that of the α-sugar. A more plausible view, which we have not yet confirmed by mathematical analysis, is that the intermediate end-point, $[\alpha]_{5461}=135^{\circ}$, represents the rotatory power, not of the μ-sugar, but of an equilibrium mixture, $\alpha \rightleftharpoons \mu$, from which only the β-sugar is excluded.

By making use of this intermediate end-point, we obtain the velocity coefficients shown in Table III. The second of these series is not so consistent as the first, where the velocity coefficient is exceptionally uniform; but in both cases the data show clearly that the early stages of the mutarotation of α-galactose can be expressed quite satisfactorily as a unimolecular change, with velocity coefficient 0.064 , and tending towards an end-point at $[\alpha]_{5461}=135^{\circ}$.

Table III.

Velocity Coefficients in the Early Stages of Mutarotation of α-Galactose.

t (min.).	$k_{e} \times 10^{4}$.	t (min.).	$k_{e} \times 10^{4}$.
$2 \cdot 15+0.95$	640	$2.65+0.95$	624
+1.45	640	+1.30	602
+1.83	637	+1.93	611
+2.20	649	+2.37	624
+2.70	650	+2.78	643
+3.25	632	+3.23	645
+3.83	643	+3.68	639
+4.42	654	+4.17	650
$+5 \cdot 08$	644	+4.67	650
+5.95	649	+5.17	648
+6.67	649	+5.68	651
+7.35	645	+6.25	658
Mean $k_{c}=0.0644$		Mean $k_{e}=0.0637$	

(i) Calculations of Exponents and Coefficients.-In order to determine the values of the coefficients $A_{1}, B_{1}, A_{2}, B_{2}$ of the empirical equations, and the unknown exponent m_{2}, we may notice that the velocity coefficients in the initial stages of the mutarotation of α - and β-galactose are given by

$$
-d \theta / d t=A_{1} m_{1}+B_{1} m_{2} \text { and }-d \theta / d t=A_{2} m_{1}+B_{2} m_{2}
$$

If expressed as the velocity coefficient of a unimolecular action, with C as the limiting value, these quantities become

$$
\frac{A_{1} m_{1}+B_{1} m_{2}}{A_{1}+B_{1}} \text { and } \frac{A_{2} m_{1}+B_{2} m_{2}}{A_{2}+B_{2}}
$$

Since the initial stages of the mutarotation of the α-sugar can be expressed as a unimolecular action with a velocity coefficient 0.064 , and a range of $172^{\circ}-135^{\circ}=37^{\circ}$ (instead of $172^{\circ}-94^{\circ}=78^{\circ}$, when referred to the equilibrium value), the first of these expressions has the value $0.064 \times 37 \div 78=0.030$, whilst the second is approximately zero (see p.675). Thus for the α-sugar we have

$$
A_{1}+B_{1}=15.70 \text { and } A_{1} m_{1}+B_{1} m_{2}=15.70 \times 0.030=0.48
$$

whilst for the β-sugar

$$
A_{2}+B_{2}=-6 \cdot 1 \text { and } A_{2} m_{1}+B_{2} m_{2}=0 \text { (approximately) }
$$

where in each equation $m_{1}=0.0188$. If therefore m_{2} were known, we could now calculate the four remaining coefficients, A_{1}, B_{1}, A_{2}, B_{2}, of the empirical equations from these four relationships. Alternatively, we can eliminate m_{2}, B_{1}, and B_{2} from these relations and so obtain

$$
\begin{equation*}
0 \cdot 115 A_{1}-0 \cdot 181 A_{2}-2 \cdot 91=0 \tag{1}
\end{equation*}
$$

Since only the ends of the mutarotation curves have been used hitherto, the additional datum that is required to complete the analysis can be brought in most easily by reading off the values of θ for each sugar at a time (e.g., 20 minutes) when mutarotation is less than half-complete. Thus since $\theta_{\alpha}=28.68$ and $\theta_{\beta}=13.99$ when $t=20$ (and consequently $e^{-m_{1} t}=0.6865$) we can write :

$$
\begin{aligned}
& 0.6865 A_{1}+B_{1} e^{-m_{2} t}+C=28.68 \\
& 0.6865 A_{2}+B_{2} e^{-m_{2} t}+C=13.99
\end{aligned}
$$

or, since $B_{1}=15.70-A_{1}, \quad B_{2}=-6.10-A_{2}, C=18.80$, we can eliminate m_{2} and obtain

$$
\begin{equation*}
-0 \cdot 622 A_{1}+0 \cdot 898 A_{2}+15 \cdot 2=0 \tag{2}
\end{equation*}
$$

Similar equations can be deduced from the values of θ_{α} and θ_{β} at any other values of t, but, when t is large, the ratios involved approximate to zero and therefore become of very little value.

Equations (1) and (2) can now be combined to give A_{1} and A_{2}, and hence B_{1}, B_{2}, and m_{2}. Unfortunately, these eliminations result in an exaggeration of the experimental errors which make it almost a matter of accident whether they yield a plausible solution of the problem or not. The combination of data which we happened to use gave values for the coefficients which required very little adjustment to make them fit the curves, the adjusted values being
$m_{2}=0 \cdot 146, A_{1}=14 \cdot 3, B_{1}=1 \cdot 4, A_{2}=-7 \cdot 13, B_{2}=1 \cdot 03 ;$ but as a different selection of data gave $B_{2}=0$ (in which case the mutarotation curve of the α-sugar would have been unimolecular), we think it desirable to describe an alternative procedure, which does not depend on the selection of a single pair of readings but is based upon a general average of a series.

Table IV.
Determination of Coefficients.

t.	θa.	A_{1}.		$\theta \beta$.	A_{2}.	
2	$33 \cdot 60$	$15 \cdot 48$		$12 \cdot 70$	$-6 \cdot 33$	
5	$32 \cdot 49$	$15 \cdot 04$		$12 \cdot 78$	$-6 \cdot 61$	
10	30.97	$14 \cdot 69$		$13 \cdot 10$	-6.88	
15	29.73	$14 \cdot 49$		13.52	$-7 \cdot 00$	
20	28.68	$14 \cdot 40$		13.99	$-7 \cdot 01$	
30	26.95	$14 \cdot 33$		$14 \cdot 80$	-7.03	
40	$25 \cdot 57$	$14 \cdot 36$		$15 \cdot 48$	-7.04	7
50	24.39	$14 \cdot 31$	$14 \cdot 31$	16.05	$-7 \cdot 04$	
60	$23 \cdot 43$	$14 \cdot 30$	$14 \cdot 31$	$16 \cdot 48$	$-7 \cdot 16$	
70	$22 \cdot 62$	$14 \cdot 25$		16.86	$-7 \cdot 23$	
80	-	-		$17 \cdot 16$	$-7 \cdot 29$	

Table V.
Mutarotation of α - and β-Galactose.

t.	$\theta_{\text {a }}$ (obs.).	θ_{a} (calc.).	Diff.
0	34-50*	$14 \cdot 30+1 \cdot 40+18 \cdot 80=34 \cdot 50$	$0 \cdot 00$
2	$33 \cdot 60$	$13.77+1.05+18 \cdot 80=33 \cdot 62$	-0.02
5	$33 \cdot 49$	$13.02+0.67+18.80=32.49$	0.00
10	$30 \cdot 97$	$11.84+0.32+18.80=30.96$	+0.01
15	29.73	$10.78+0.16+18.80=29.74$	-0.01
20	28.68	$9.81+0.07+18.80=28.68$	0.00
30	26.98	$8 \cdot 13+0.02+18 \cdot 80=26.95$	$+0.03$
40	25.57	$6.74+-+18.80=25.54$	$+0.03$
50	24-39	$5.59+-+18.80=24.39$	$0 \cdot 00$
60	$23 \cdot 43$	$4.63+-+18.80=23.43$	0.00
70	$22 \cdot 62$	$3.83+-+18.80=22.63$	-0.01
80	21.95	$3.18+-+18.80=21.98$	-0.03
100	$20 \cdot 97$	$2.18+-+18.80=20.98$	-0.01
t.	$\theta \beta$ (obs.).	$\theta \beta$ (calc.).	Diff.
0	12.70*	$-7 \cdot 13+1 \cdot 03+18 \cdot 80=12.70$	$0 \cdot 00$
2	12.70	$-6.87+0.77+18.80=12.70$	$0 \cdot 00$
5	12.78	$-6.46+0.50+18.80=12.84$	-0.06
10	13.10	$-5.91+0.24+18.80=13.13$	-0.03
15	13.52	$-5.38+0.12+18.80=13.54$	-0.02
20	$13 \cdot 98$	$-4.89+0.06+18.80=13.97$	+0.02
30	14.80	$-4.06+0.01+18.80=14.75$	$+0.05$
40	$15 \cdot 48$	$-3.33+-+18.80=15.48$	$0 \cdot 00$
50	16.05	$-2.79+-+18.80=16.02$	$+0.03$
60	$15 \cdot 48$	$-2.31+-+18.80=16.51$	-0.03
70	16.86	$-1.91+-+18.80=16.89$	-0.03
80	$17 \cdot 16$	$-1.59+-+18.80=17.21$	-0.05
100	$17 \cdot 67$	$-1.01+-+18.80=17.69$	-0.02

[^1]This procedure depends upon the fact that one exponential dies out before the other, after which the mutarotation becomes unimolecular and gives rise to steady velocity coefficients. We can therefore extrapolate back to a hypothetical initial value at zero time, on the assumption that the second exponential is not present, and so obtain values of A_{1} or A_{2} from the expressions

$$
A_{1}=\left(\theta_{\mathrm{a}}-\theta_{\infty}\right) / e^{-0.0188 t} ; A_{2}=\left(\theta_{\beta}-\theta_{\infty}\right) / e^{-0.0188 t} .
$$

Table VI.

Mutarotation of α-Galactose in Water at 20°.
(a) Second sample (recryst. HAc), 10 g./100 c.c. in 2 dm. tube.

$$
\theta_{\mathbf{a}}=13 \cdot 62 e^{-0.0188 t}+1 \cdot 21 e^{-0 \cdot 146 t}+18 \cdot 80
$$

t (min.).	obs.	calc.	Diff.	k.	$k_{\boldsymbol{f}}$.
$2 \cdot 15$	$32 \cdot 80$	32.78	+0.02		
$2 \cdot 70$	32.58	32.56	+0.02	0.0285	
$3 \cdot 10$	$32 \cdot 44$	$32 \cdot 41$	+0.03	$0 \cdot 0274$	
$3 \cdot 60$	32.26	32.24	+0.02	$0 \cdot 0272$	
$3 \cdot 98$	$32 \cdot 13$	32-12	+0.01	$0 \cdot 0267$	
$4 \cdot 35$	31.99	31.99	$0 \cdot 00$	$0 \cdot 0271$	
$4 \cdot 85$	31.82	31.83	-0.01	$0 \cdot 0269$	
$5 \cdot 40$	31.67	31.65	$+0.02$	$0 \cdot 0259$	
$5 \cdot 98$	31.47	31.48	-0.01	$0 \cdot 0260$	
6.57	31.27	31-29	-0.02	$0 \cdot 0262$	
$7 \cdot 23$	31-10	31.10	$0 \cdot 00$	$0 \cdot 0255$	
$8 \cdot 10$	$30 \cdot 85$	$30 \cdot 87$	-0.02	$0 \cdot 0252$	
$8 \cdot 82$	$30 \cdot 66$	$30 \cdot 67$	-0.01	0.0248	
9.50	30.50	$30 \cdot 49$	$+0.01$	0.0244	
$10 \cdot 70$	30.16	$30 \cdot 19$	-0.03	$0 \cdot 0244$	
12.30	29.78	29.81	-0.03	0.0239	
$13 \cdot 22$	29.59	$29 \cdot 60$	-0.01	0.0235	
$15 \cdot 15$	29-16	$29 \cdot 17$	-0.01	0.0232	
17.00	28.77	$28 \cdot 80$	-0.03	0.0229	
$19 \cdot 83$	28.24	28.25	-0.01	$0 \cdot 0223$	
$22 \cdot 15$	27.81	$27 \cdot 83$	-0.02	0.0220	
$24 \cdot 28$	$27 \cdot 46$	$27 \cdot 47$	-0.01	0.0217	
26.97	$27 \cdot 02$	$27 \cdot 02$	$0 \cdot 00$	0.0215	
30.17	26.55	26.53	$+0.02$	0.0211	
33.23	$26 \cdot 10$	26.08	$+0.02$	$0 \cdot 0210$	
36.55	$25 \cdot 65$	25,65	$0 \cdot 00$	$0 \cdot 0208$	0.0191
$40 \cdot 15$	$25 \cdot 21$	25-20	$+0.01$	$0 \cdot 0206$	0.0188
$43 \cdot 28$	24.85	$24 \cdot 84$	$+0.01$	$0 \cdot 0204$	0.0187
$47 \cdot 35$	24-40	$24 \cdot 39$	$+0.01$	0.0203	0.0188
$54 \cdot 67$	23.67	23.67	$0 \cdot 00$	0.0201	0.0189
$63 \cdot 00$	22.96	22.97	-0.01	$0 \cdot 0196$	0.0183
$70 \cdot 17$	22.45	$22 \cdot 40$	$+0.05$	0.0198	0.0188
82.28	21.71	21.70	+0.01	0.0196	0.0188
$92 \cdot 15$	21.21	21.21	$0 \cdot 00$	0.0196	0.0187
105.95	$20 \cdot 65$	$20 \cdot 64$	$+0.01$	0.0195	$0 \cdot 0189$
122.73	$20 \cdot 14$	$20 \cdot 15$	-0.01	0.0195	0.0189
$150 \cdot 00$	$19 \cdot 63$	$19 \cdot 61$	$+0.02$	$0 \cdot 0191$	$0 \cdot 0186$
∞	18.80	$18 \cdot 80$	$0 \cdot 00$		

(b) Third sample (recryst. HAc and EtOH), 10 g./100 c.c. in 2 dm. tube.

$$
\theta_{a}=14 \cdot 33 e^{-0.0188 t}+1 \cdot 40 e^{-0.146 t}+18 \cdot 81
$$

t (min.).	$\underbrace{5461}$		Diff.	k.	k_{e}.
	obs.	calc.			
$2 \cdot 65$	33.36	$33 \cdot 40$	-0.04		
$3 \cdot 60$	33.01	$33 \cdot 03$	-0.02	0.0257	
$3 \cdot 95$	32.90	$32 \cdot 89$	$+0.01$	$0 \cdot 0250$	
$4 \cdot 58$	32.68	$32 \cdot 68$	$0 \cdot 00$	0.0247	
$5 \cdot 02$	32.52	32.52	0.00	0.0252	
$5 \cdot 43$	32.36	$32 \cdot 38$	-0.02	0.0257	
$5 \cdot 88$	32.21	32.23	-0.02	0.0255	
6.33	32.08	$32 \cdot 09$	-0.01	0.0250	
6.82	31.91	31.94	-0.03	0.0252	
$7 \cdot 32$	31.76	31.78	-0.02	0.0250	
$7 \cdot 82$	31.62	31.63	-0.01	0.0247	
$8 \cdot 33$	31.47	31.47	$0 \cdot 00$	0.0245	
$8 \cdot 90$	31-30	$31 \cdot 31$	-0.01	0.0245	
$9 \cdot 48$	31-14	$31 \cdot 15$	-0.01	0.0243	
$10 \cdot 20$	30.95	$30 \cdot 96$	-0.01	0.0240	
11.47	$30 \cdot 62$	$30 \cdot 62$	$0 \cdot 00$	0.0237	
$12 \cdot 38$	$30 \cdot 38$	$30 \cdot 39$	-0.01	0.0236	
13.53	$30 \cdot 11$	$30 \cdot 11$	$0 \cdot 00$	$0 \cdot 0232$	
$15 \cdot 37$	29.70	29.68	$+0.02$	0.0228	
17.75	$29 \cdot 19$	29.18	$+0.01$	0.0224	
$20 \cdot 33$	28.67	28.66	$+0.01$	$0 \cdot 0220$	
$22 \cdot 62$	28.23	28.23	0.00	0.0218	
26.03	27.64	$27 \cdot 62$	$+0.02$	$0 \cdot 0214$	
$30 \cdot 35$	26.94	26.92	$+0.02$	$0 \cdot 0210$	
36.05	$26 \cdot 12$	26.09	$+0.03$	$0 \cdot 0206$	
$44 \cdot 47$	25.06	$25 \cdot 02$	+0.04	$0 \cdot 0202$	$0 \cdot 0186$
53.87	24.05	24.01	$+0.04$	$0 \cdot 0199$	$0 \cdot 0187$
61.85	23.29	23.29	$0 \cdot 00$	$0 \cdot 0199$	$0 \cdot 0190$
77.83	22.11	$22 \cdot 13$	-0.02	0.0197	$0 \cdot 0190$
89.25	21.49	21.49	0.00	0.0195	$0 \cdot 0189$
101.75	20.91	20.93	-0.02	0.0195	$0 \cdot 0190$
112.52	20.51	$20 \cdot 54$	-0.03	$0 \cdot 0195$	$0 \cdot 0191$
∞	18.81	18.81	$0 \cdot 00$		

The data set out in Table IV give for A_{1} the trustworthy value $14 \cdot 3 ; B_{1}$ must then have the value $1 \cdot 4$, since $A_{1}+B_{1}=15 \cdot 7$. Moreover, since $14.3 \times 0.0188+1.4 m_{2}=0.48$, it follows at once that $m_{2}=0.148$, in close agreement with the value 0.146 which we had already found to fit the curves. The extrapolated values for A_{2} vary very little after the first 10 minutes; a long series of values is then obtained with an average $A_{2}=-7 \cdot 1$, which agrees closely with the coefficient $-\mathbf{7} \cdot 13$ which we had found to fit the curves. Since $A_{2}+B_{2}=-6 \cdot 1$, the value of B_{2} must be $1 \cdot 0$ approximately, but a slight adjustment is needed to get the inflexion into the right position, and this adjustment leads to a small negative value (instead of an exact zero value) for $d \theta / d t$ for the β-sugar when $t=0$.
(j) Empirical Equations for the Mutarotation of α - and β-Galactose. -The empirical equations as finally adjusted are

$$
\begin{aligned}
& \theta_{a}=14 \cdot 30 e^{-0.0188 t}+1 \cdot 40 e^{-0 \cdot 146 t}+18 \cdot 80 \\
& \theta_{\beta}=-7 \cdot 13 e^{-0.0188 t}+1 \cdot 03 e^{-0 \cdot 146 t}+18 \cdot 80 .
\end{aligned}
$$

The extent of the agreement with the interpolated values for the rotatory powers of the two sugars at equal increments of time is shown in Table V. This table also shows how the influence of the second exponential disappears after about 30 minutes, when the curves assume a unimolecular form, as Riiber and Minsaas observed. The agreement between the original readings and values calculated from the equations is shown in Tables VI and VII.

Table VII.

Mutarotation of β-Galactose in Water at 20°.
(a) First sample (washed once), $5 \mathrm{~g} . / 100$ c.c. in 2 dm . tube.
$\theta_{\beta}=-3 \cdot 20 e^{-0.0188 t}+0 \cdot 30 e^{-0 \cdot 166 t}+9 \cdot 28$.

	$\theta_{5461}{ }^{\text {. }}$			k.	k.
t (min.).	obs.	calc.	Diff.		
$1 \cdot 75$	6.51	$6 \cdot 41$	$+0 \cdot 10$		
$2 \cdot 53$	6.48	$6 \cdot 44$	$+0 \cdot 04$		
$3 \cdot 13$	6.48	$6 \cdot 45$	$+0.03$		
$3 \cdot 73$	$6 \cdot 48$	$6 \cdot 47$	$+0.01$		
$4 \cdot 82$	$6 \cdot 48$	6.51	-0.03		
$5 \cdot 73$	$6 \cdot 52$	$6 \cdot 54$	-0.02		
$7 \cdot 23$	6.56	6.59	-0.03	$0 \cdot 0053$	
$8 \cdot 08$	6.58	$6 \cdot 62$	-0.04	$0 \cdot 0057$	
$9 \cdot 23$	$6 \cdot 64$	$6 \cdot 67$	-0.03	$0 \cdot 0079$	
$10 \cdot 47$	6.67	$6 \cdot 71$	-0.04	0.0081	
$12 \cdot 33$	$6 \cdot 75$	$6 \cdot 79$	-0.04	$0 \cdot 0096$	
13.87	6.82	6.85	-0.03	$0 \cdot 0099$	
$16 \cdot 47$	6.93	$6 \cdot 96$	-0.03	0.0119	
$18 \cdot 28$	$6 \cdot 99$	$7 \cdot 03$	-0.04	0.0122	
$20 \cdot 23$	$7 \cdot 09$	$7 \cdot 10$	-0.01	0.0133	
$22 \cdot 25$	$7 \cdot 18$	$7 \cdot 18$	0.00	0.0140	
$24 \cdot 35$	$7 \cdot 27$	$7 \cdot 26$	$+0.01$	$0 \cdot 0147$	
$26 \cdot 38$	$7 \cdot 33$	$7 \cdot 33$	$0 \cdot 00$	$0 \cdot 0147$	
$29 \cdot 20$	$7 \cdot 45$	$7 \cdot 43$	$+0.02$	0.0155	
32.35	$7 \cdot 55$	$7 \cdot 54$	$+0.01$	0.0157	$0 \cdot 0192$
$37 \cdot 33$	$7 \cdot 69$	$7 \cdot 69$	0.00	0.0159	$0 \cdot 0184$
41.53	$7 \cdot 82$	$7 \cdot 81$	$+0.01$	0.0160	$0 \cdot 0188$
$45 \cdot 28$	$7 \cdot 93$	$7 \cdot 91$	$+0.02$	0.0168	$0 \cdot 0192$
$49 \cdot 73$	$8 \cdot 06$	$8 \cdot 02$	$+0.04$	0.0173	$0 \cdot 0198$
54.85	$8 \cdot 16$	$8 \cdot 14$	$+0.02$	0.0173	$0 \cdot 0193$
$59 \cdot 53$	$8 \cdot 27$	$8 \cdot 23$	$+0.04$	0.0177	0.0196
$69 \cdot 13$	$8 \cdot 42$	$8 \cdot 41$	+0.01	0.0175	0.0190
$80 \cdot 88$	$8 \cdot 58$	$8 \cdot 58$	$0 \cdot 00$	$0 \cdot 0175$	0.0187
$89 \cdot 20$	$8 \cdot 71$	$8 \cdot 68$	$+0.03$	0.0182	0.0190
$117 \cdot 42$	8.95	8.93	+0.02	0.0185	$0 \cdot 0194$
∞	$9 \cdot 28$	$9 \cdot 28$	$0 \cdot 00$		

(b) Second sample (washed twice), $5 \mathrm{~g} . / 100$ c.c. in 2 dm . tube.

$$
\theta_{\beta}=-3.56 e^{-0.0188 t}+0.51 e^{-0.146 t}+9.34
$$

t (min.).	obs.	calc.	Diff.	k.	$k_{\text {c }}$.
1.92	6.31	6.29	+0.02		
$2 \cdot 48$	$6 \cdot 31$	6.30	+0.01		
$2 \cdot 88$	$6 \cdot 32$	$6 \cdot 30$	+0.02		
$3 \cdot 32$	$6 \cdot 31$	$6 \cdot 30$	+0.01		
$3 \cdot 90$	$6 \cdot 31$	6.32	-0.01		
$4 \cdot 42$	$6 \cdot 32$	6.33	-0.01		
$4 \cdot 95$	6.35	6.34	$+0.01$		
$5 \cdot 83$	6.35	6.36	-0.01		
6.53	$6 \cdot 36$	$6 \cdot 38$	-0.02		
$7 \cdot 60$	$6 \cdot 40$	$6 \cdot 42$	-0.02	0.0053	
$8 \cdot 80$	$6 \cdot 46$	$6 \cdot 46$	$0 \cdot 00$	$0 \cdot 0074$	
9.95	6.51	6.51	$0 \cdot 00$	0.0085	
11.50	6.54	6.55	-0.01	$0 \cdot 0082$	
$12 \cdot 37$	6.59	6.59	$0 \cdot 00$	0.0093	
$14 \cdot 10$	$6 \cdot 68$	$6 \cdot 68$	0.00	0.0107	
16.00	6.76	6.75	$+0.01$	0.0114	
18.03	$6 \cdot 86$	6.84	+0.02	0.0124	
20.33	6.95	6.94	+0.01	0.0129	
$22 \cdot 43$	$7 \cdot 04$	$7 \cdot 02$	+0.02	0.0134	
24.53	$7 \cdot 13$	$7 \cdot 10$	+0.03	0.0140	
26.68	$7 \cdot 22$	$7 \cdot 19$	+0.03	0.0144	
28.58	$7 \cdot 28$	$7 \cdot 26$	+0.02	0.0145	
29.43	$7 \cdot 32$	$7 \cdot 30$	+0.02	0.0147	
32.12	$7 \cdot 43$	$7 \cdot 44$	-0.01	0.0153	
35.32	$7 \cdot 52$	7.51	+0.01	0.0153	0.0184
$39 \cdot 15$	$7 \cdot 64$	$7 \cdot 63$	+0.01	0.0152	0.0182
$42 \cdot 85$	$7 \cdot 76$	$7 \cdot 75$	+0.01	0.0159	0.0185
$47 \cdot 00$	$7 \cdot 88$	$7 \cdot 87$	$+0.01$	0.0162	0.0193
$51 \cdot 17$	$7 \cdot 98$	$7 \cdot 98$	$0 \cdot 00$	0.0163	0.0190
58.78	$8 \cdot 16$	$8 \cdot 16$	$0 \cdot 00$	0.0166	0.0184
$64 \cdot 23$	8.27	$8 \cdot 27$	0.00	0.0167	0.0179
$69 \cdot 27$	$8 \cdot 35$	$8 \cdot 37$	-0.02	0.0166	0.0173
77.92	$8 \cdot 50$	$8 \cdot 61$	-0.01	0.0169	0.0182
$90 \cdot 72$	$8 \cdot 67$	$8 \cdot 69$	-0.02	0.0170	0.0181
109•17	$8 \cdot 85$	$8 \cdot 86$	-0.01	0.0170	0.0178
∞	9.34	9-34	$0 \cdot 00$		

Evaluation of the Fundamental Constants.
The empirical equations set out above provide a complete summary of the experimental data, and it is impossible to deduce from these data anything that is not contained in the equations. Whilst, however, it is easy to work out the seven constants of the empirical equations when the seven fundamental constants of the system are known, it is not easy to carry out the converse process, on account of the complex form in which the fundamental constants appear in the equations. (i) The simplest relationships are found in the exponents, which depend only on the velocity coefficients of the sugars, and not on their optical rotations. These relationships can
be summarised most concisely by means of the two following equations:
$k_{1}+k_{2}+k_{3}+k_{4}=m_{1}+m_{2}=0.0188+0.146=0.1648$
$k_{2} k_{3}+k_{1} k_{3}+k_{1} k_{4}=m_{1} m_{2}=0.0188 \times 0.146=0.002745$.
(ii) The coefficients of the empirical equations* are more complex functions, since they depend on the rotations as well as the velocity coefficients of the sugars. They may, however, be summarised as follows :

$$
\begin{aligned}
C & =\alpha x_{\infty}+\mu y_{\infty}+\beta z_{\infty}=18.80 \\
A_{1} & =-\frac{m_{2}}{m_{2}-m_{1}} C+\frac{m_{2}}{m_{2}-m_{1}} \alpha-\frac{k_{1}}{m_{2}-m_{1}}(\alpha-\mu)=14.30 \\
B_{1} & =\frac{m_{1}}{m_{2}-m_{1}} C-m_{1}-m_{1} \alpha+\frac{k_{1}}{m_{2}-m_{1}}(\alpha-\mu)=1.40 \\
A_{2} & =-\frac{m_{2}}{m_{2}-m_{1}} C+\frac{m_{2}}{m_{2}-m_{1}} \beta-\frac{k_{3}}{m_{2}-m_{1}}(\beta-\mu)=-7.13 \\
B_{2} & =\frac{m_{1}}{m_{2}-m_{1}} C-\frac{m_{1}}{m_{2}-m_{1}} \beta+\frac{k_{3}}{m_{2}-m_{1}}(\beta-\mu)=1.03
\end{aligned}
$$

If we add these equations in pairs we merely get the former relations $A_{1}+B_{1}+C=\alpha$; and $A_{2}+B_{2}+C=\beta$. If, however, we subtract them we get

$$
\begin{align*}
& A_{1}-B_{1}=\frac{m_{2}+m_{1}}{m_{2}-m_{1}}(\alpha-C)-\frac{2 k_{1}}{m_{2}-m_{1}}(\alpha-\mu)=12.9 \\
& A_{2}-B_{2}=\frac{m_{2}+m_{1}}{m_{2}-m_{1}}(\beta-C)-\frac{2 k_{3}}{m_{2}-m_{1}}(\beta-\mu)=-8.16 \tag{5}
\end{align*}
$$

or
$k_{1}(\alpha-\mu)=\frac{1}{2}\left(m_{2}+m_{1}\right)(\alpha-C)-\frac{1}{2}\left(m_{2}-m_{1}\right) 12.9=0.4732$
$k_{3}(\beta-\mu)=\frac{1}{2}\left(m_{2}+m_{1}\right)(\beta-C)+\frac{1}{2}\left(m_{2}-m_{1}\right) 8 \cdot 16=0.01634$
where numerical values for $k_{1}(\alpha-\mu)$ and $k_{3}(\beta-\mu)$ have been deduced by inserting $m_{2}+m_{1}=0.1648, \quad m_{2}-m_{1}=0.1272$, $\alpha-C=15 \cdot 7, \beta-C=-6.1$.
(iii) The fifth relation that is required to give the four unknown velocity coefficients and the unknown rotation μ, is supplied by
or

$$
\begin{aligned}
\theta_{\infty} & =\alpha x_{\infty}+\mu y_{\infty}+\beta z_{\infty} \\
C & =\frac{\alpha k_{2} k_{3}+\mu k_{1} k_{3}+\beta k_{1} k_{4}}{k_{2} k_{3}+k_{1} k_{3}+k_{1} k_{4}}
\end{aligned}
$$

whence $\quad(\alpha-C) k_{2} k_{3}+(\mu-C) k_{1} k_{3}+(\beta-C) k_{1} k_{4}=0$

[^2]or, dividing by $k_{1} k_{3}$,
\[

$$
\begin{equation*}
\mu=C-(\alpha-C) \frac{k_{2}}{{\underset{k}{1}}^{1}}-(\beta-C) \frac{k_{4}}{k_{3}}=18 \cdot 8-15 \cdot 7 \frac{k_{2}}{k_{1}}+6 \cdot 1 \frac{k_{4}}{k_{3}} \tag{7}
\end{equation*}
$$

\]

(iv) The simplest way of proceeding from this point is to assume a value of μ, and then to deduce k_{1} and k_{3} from (5) and (6). Substitution in (3) gives $k_{2}+k_{4}$, which can be combined with (7) (after a similar substitution) to give k_{2} and k_{1}. The sum of the products in (4) can then be evaluated and compared with the observed value $m_{1} m_{2}=0.002745$. By this method of trial and error, we find that μ has the value $11 \cdot 67$, and that, if we alter it only to $11 \cdot 65$, an erroneous value (0.002726 instead of 0.002745) is obtained for $m_{1} m_{2}$. We can therefore assign to the intermediate sugar the specific rotation $[\alpha]_{5461}=58^{\circ}$ if we accept the validity of the three-sugar scheme. The corresponding values of the velocity coefficients are :

$$
\begin{aligned}
k_{1} & =0.0207 & k_{3} & =0.0159 \\
k_{2} & =0.0494 & k_{4} & =0.0788 \\
k_{1}+k_{2} & =\mathbf{0 . 0 7 0 1} & k_{3}+k_{4} & =\overline{0.0947}
\end{aligned}
$$

Equilibrium Concentrations and Rotations.

The equilibrium concentrations deduced from the velocity coefficients of the three-sugar scheme are

$$
x_{\infty}=28.5 \% ; y_{\infty}=12.0 \% ; z_{\infty}=59.5 \% .
$$

These can be compared with the values deduced by Riiber and Minsaas, viz.,

$$
x_{\infty}=6.61 \% ; y_{\infty}=27.35 \% ; z_{\infty}=66.04 \%
$$

A similar comparison of the optical rotations of the three sugars gives
or

α.	μ.	β.
$[\alpha]_{5461}=173^{\circ}$	58°	63.5° (Lowry and Smith)
$[\alpha]_{\mathbf{D}}=144 \cdot 5^{\circ}$	$135 \cdot 0^{\circ}$	$52 \cdot 2^{\circ}$ (Riiber and Minsaas)
$[\alpha]_{5661}=173 \cdot 4^{\circ}$	162°	$62 \cdot 6^{\circ}$

if we increase the values of $[\alpha]_{\mathrm{D}}$ by 20% * to allow for the change of wave-length.

Since Riiber and Minsaas did not detect any anomalies in the mutarotation curves, their estimate of the rotatory power of the intermediate sugar is based on less direct evidence than our own, and is obviously incorrect in making this rotation approximate to that of α-galactose, whereas actually it does not differ much from

[^3]that of β-galactose. Their equations also lead to an abnormally slow mutarotation of α-galactose in the early stages (corresponding to the small change of rotation from α to μ), whereas in fact the mutarotation is exceptionally fast at this stage.

On the assumption that only 3 isomerides are present, our estimate of the percentages of the three sugars in the equilibrium mixture is probably correct to within a few units, since it is based on data in which the effects of the third sugar are very obvious. It has the advantage of raising the proportion of the α-sugar to a more reasonable figure than that given by Riiber and Minsaas, namely 28.5% instead of only 6.6%. The proportion of the intermediate open-chain sugar, on the other hand, is reduced from 27% to 12% of the total. The two estimates concur, however, in making the β-sugar the predominant constituent, forming 60 to 66% of the equilibrium mixture.

Since the equilibrium proportion of α-galactose in anhydrous methyl alcohol is about $1 / 2$ of the total (J., 1904, 85, 1557), the ratio β / α cannot be greater than unity in this solvent; it is therefore surprising to find a ratio $\beta / \alpha>2 / 1$ in water. This wide difference may be due to a selective action of water in promoting the formation of β-galactose at the expense of the α-sugar; but, on the other hand, it may be merely a proof that the equilibrium in aqueous solutions is too complex to be represented by the simple system which must be postulated if a mathematical analysis of the data is to be carried out. Whilst, therefore, we have sought to make the fullest possible use of this mathematical analysis, and to follow up all the consequences which flow from its application to our data, our positive assertions do not go beyond the simple facts set out in the following summary, viz., that: (i) The mutarotation data for galactose cannot be interpreted on a 2 -sugar scheme, but can be expressed by a 3 -sugar scheme; (ii) a third sugar must therefore be formed in substantial quantities in solution; (iii) this sugar must be related unsymmetrically to the α - and β-sugars, in rotation or in velocity of formation and reversion, or in both; (iv) since the mutarotation of β-galactose proceeds only very slowly during the first few minutes, and gives rise to inflected curves, the initial product of change must have a similar rotation to the β-sugar.

We are indebted to Messrs. Bromwich, White, and Constable, of St. John's College, for assistance in the mathematical analysis set out above, and desire to take this opportunity of expressing our thanks.

[^4]
[^0]: * This value has been calculated by deducing the strength of the solution from its final rotatory power on the assumption that $\left[\theta_{\infty}\right]=94^{\circ}$.

[^1]: * By extrapolation.

[^2]: * The coefficients for θ_{β} are got by substituting k_{3} for k_{1} and β for α, since the m 's are reversible functions of the k 's.

[^3]: * This is greater than the observed increment, but has been selected because it gives the best agreement in the case of the α - and β-sugars.

[^4]: University Chemicai Laboratory, Cambridge.

